Terrestrial laser scanning to estimate plot-level forest canopy fuel properties

نویسندگان

  • Mariano García
  • F. Mark Danson
  • David Riaño
  • Emilio Chuvieco
  • F. Alberto Ramirez
  • Vishal Bandugula
چکیده

This paper evaluates the potential of a terrestrial laser scanner (TLS) to characterize forest canopy fuel characteristics at plot level. Several canopy properties, namely canopy height, canopy cover, canopy base height and fuel strata gapwere estimated. Different approaches were tested to avoid the effect of canopy shadowing on canopy height estimation caused by deployment of the TLS below the canopy. Estimation of canopy height using a grid approach provided a coefficient of determination of R2 = 0.81 and an RMSE of 2.47m. A similar RMSEwas obtained using the 99th percentile of the height distribution of the highest points, representing the 1% of the data, although the coefficient of determination was lower (R2 = 0.70). Canopy cover (CC) was estimated as a function of the occupied cells of a grid superimposed upon the TLS point clouds. It was found that CC estimates were dependent on the cell size selected, with 3 cm anopy cover being the optimum resolution for this study. The effect of the zenith view angle on CC estimates was also analyzed. A simple method was developed to estimate canopy base height from the vegetation vertical profiles derived from an occupied/non-occupied voxels approach. Canopy base height was estimated with an RMSE of 3.09m and an R2 = 0.86. Terrestrial laser scanning also provides a unique opportunity to estimate the fuel strata gap (FSG), which has not been previously derived from remotely sensed data. The FSG was also derived from the vegetation vertical profile with an RMSE of 1.53m and an R2 = 0.87.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA

Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest...

متن کامل

A Machine Learning Method for Co-Registration and Individual Tree Matching of Forest Inventory and Airborne Laser Scanning Data

Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS) signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volu...

متن کامل

Detecting Change in Burnt Landscapes using a Terrestrial LiDAR System

A Terrestrial LiDAR system or Terrestrial Laser Scanner (TLS) was used to detect changes in burnt landscapes. Since wildfires are a common occurrence in the Australian landscape, prescribed burns are routinely carried out by land management agencies and government departments. These prescribed burns reduce the fuel load which decreases the severity of subsequent unplanned wildfires. Recent adva...

متن کامل

Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data

The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the pr...

متن کامل

Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks

The Salford Advanced Laser Canopy Analyser (SALCA) is a unique dual-wavelength full-waveform terrestrial laser scanner (TLS) designed to measure forest canopies. This article has two principle objectives, first to present the detailed analysis of the radiometric properties of the SALCA instrument, and second, to propose a novel method to calibrate the recorded intensity to apparent reflectance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011